Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Neuroimaging Clin N Am ; 34(2): 191-202, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604704

RESUMO

Ultrasound evaluation of the brain is performed through acoustic windows. Transcranial Doppler has long been used to monitor patients with subarachnoid hemorrhage for cerebral vasospasm. Transcranial color-coded sonography permits parenchymal B-mode imaging and duplex evaluation. Transcranial ultrasound may also be used to assess the risk of delayed cerebral ischemia, screen patients for the presence of elevated intracranial pressure, confirm the diagnosis of brain death, measure midline shift, and detect ventriculomegaly. Transcranial ultrasound should be integrated with other point-of-care ultrasound techniques as an essential skill for the neurointensivist.


Assuntos
Isquemia Encefálica , Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Humanos , Hemorragia Subaracnóidea/diagnóstico por imagem , Ultrassonografia Doppler Transcraniana/métodos , Vasoespasmo Intracraniano/diagnóstico por imagem , Encéfalo
2.
Neurocrit Care ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429611

RESUMO

There is an urgent unmet need for a reliable noninvasive tool to detect elevations in intracranial pressure (ICP) above guideline-recommended thresholds for treatment. Gold standard invasive ICP monitoring is unavailable in many settings, including resource-limited environments, and in situations such as liver failure in which coagulopathy increases the risk of invasive monitoring. Although a large number of noninvasive techniques have been evaluated, this article reviews the potential clinical role, if any, of the techniques that have undergone the most extensive evaluation and are already in clinical use. Elevations in ICP transmitted through the subarachnoid space result in distension of the optic nerve sheath. The optic nerve sheath diameter (ONSD) can be measured with ultrasound, and an ONSD threshold can be used to detect elevated ICP. Although many studies suggest this technique accurately detects elevated ICP, there is concern for risk of bias and variations in ONSD thresholds across studies that preclude routine use of this technique in clinical practice. Multiple transcranial Doppler techniques have been used to assess ICP, but the best studied are the pulsatility index and the Czosnyka method to estimate cerebral perfusion pressure and ICP. Although there is inconsistency in the literature, recent prospective studies, including an international multicenter study, suggest the estimated ICP technique has a high negative predictive value (> 95%) but a poor positive predictive value (≤ 30%). Quantitative pupillometry is a sensitive and objective method to assess pupillary size and reactivity. Proprietary indices have been developed to quantify the pupillary light response. Limited data suggest these quantitative measurements may be useful for the early detection of ICP elevation. No current noninvasive technology can replace invasive ICP monitoring. Where ICP monitoring is unavailable, multimodal noninvasive assessment may be useful. Further innovation and research are required to develop a reliable, continuous technique of noninvasive ICP assessment.

3.
Stroke ; 55(5): 1235-1244, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38511386

RESUMO

BACKGROUND: The relationship between dynamic cerebral autoregulation (dCA) and functional outcome after acute ischemic stroke (AIS) is unclear. Previous studies are limited by small sample sizes and heterogeneity. METHODS: We performed a 1-stage individual patient data meta-analysis to investigate associations between dCA and functional outcome after AIS. Participating centers were identified through a systematic search of the literature and direct invitation. We included centers with dCA data within 1 year of AIS in adults aged over 18 years, excluding intracerebral or subarachnoid hemorrhage. Data were obtained on phase, gain, coherence, and autoregulation index derived from transfer function analysis at low-frequency and very low-frequency bands. Cerebral blood velocity, arterial pressure, end-tidal carbon dioxide, heart rate, stroke severity and sub-type, and comorbidities were collected where available. Data were grouped into 4 time points after AIS: <24 hours, 24 to 72 hours, 4 to 7 days, and >3 months. The modified Rankin Scale assessed functional outcome at 3 months. Modified Rankin Scale was analyzed as both dichotomized (0 to 2 versus 3 to 6) and ordinal (modified Rankin Scale scores, 0-6) outcomes. Univariable and multivariable analyses were conducted to identify significant relationships between dCA parameters, comorbidities, and outcomes, for each time point using generalized linear (dichotomized outcome), or cumulative link (ordinal outcome) mixed models. The participating center was modeled as a random intercept to generate odds ratios with 95% CIs. RESULTS: The sample included 384 individuals (35% women) from 7 centers, aged 66.3±13.7 years, with predominantly nonlacunar stroke (n=348, 69%). In the affected hemisphere, higher phase at very low-frequency predicted better outcome (dichotomized modified Rankin Scale) at <24 (crude odds ratios, 2.17 [95% CI, 1.47-3.19]; P<0.001) hours, 24-72 (crude odds ratios, 1.95 [95% CI, 1.21-3.13]; P=0.006) hours, and phase at low-frequency predicted outcome at 3 (crude odds ratios, 3.03 [95% CI, 1.10-8.33]; P=0.032) months. These results remained after covariate adjustment. CONCLUSIONS: Greater transfer function analysis-derived phase was associated with improved functional outcome at 3 months after AIS. dCA parameters in the early phase of AIS may help to predict functional outcome.

4.
Diagnostics (Basel) ; 14(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396426

RESUMO

Cerebrovascular disease (CVD) poses a major public health and socio-economic burden worldwide due to its high morbidity and mortality rates. Accurate assessment of cerebral arteries' haemodynamic plays a crucial role in the diagnosis and treatment management of CVD. The study compared a non-imaging transcranial Doppler ultrasound (TCD) and transcranial color-coded Doppler ultrasound (with (cTCCD) and without (ncTCCD)) angle correction in quantifying middle cerebral arteries (MCAs) haemodynamic parameters. A cross-sectional study involving 50 healthy adults aged ≥ 18 years was conducted. The bilateral MCAs were insonated via three trans-temporal windows (TTWs-anterior, middle, and posterior) using TCD, cTCCD, and ncTCCD techniques. The MCA peak systolic velocity (PSV) and mean flow velocity (MFV) were recorded at proximal and distal imaging depths that could be visualised on TCCD with a detectable spectral waveform. A total of 152 measurements were recorded in 41 (82%) subjects with at least one-sided open TTW across the three techniques. The mean PSVs measured using TCD, ncTCCD, and cTCCD were 83 ± 18 cm/s, 81 ± 19 cm/s, and 93 ± 21 cm/s, respectively. There was no significant difference in PSV between TCD and ncTCCD (bias = 2 cm/s, p = 1.000), whereas cTCCD yielded a significantly higher PSV than TCD and ncTCCD (bias = -10 cm/s, p < 0.001; bias = -12 cm/s, p ≤ 0.001, respectively). The bias in MFV between TCD and ncTCCD techniques was (bias = -0.5 cm/s; p = 1.000), whereas cTCCD demonstrated a higher MFV compared to TCD and ncTCCD (bias = -8 cm/s, p < 0.001; bias = -8 cm/s, p ≤ 0.001, respectively). TCCD is a practically applicable imaging technique in assessing MCA blood flow velocities. cTCCD is more accurate and tends to give higher MCA blood flow velocities than non-imaging TCD and ncTCCD techniques. ncTCCD is comparable to non-imaging TCD and should be considered in clinical cases where using both TCD and TCCD measurements is needed.

5.
Neurocrit Care ; 40(1): 130-146, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37160846

RESUMO

BACKGROUND: Noninvasive neuromonitoring in critically ill children includes multiple modalities that all intend to improve our understanding of acute and ongoing brain injury. METHODS: In this article, we review basic methods and devices, applications in clinical care and research, and explore potential future directions for three noninvasive neuromonitoring modalities in the pediatric intensive care unit: automated pupillometry, near-infrared spectroscopy, and transcranial Doppler ultrasonography. RESULTS: All three technologies are noninvasive, portable, and easily repeatable to allow for serial measurements and trending of data over time. However, a paucity of high-quality data supporting the clinical utility of any of these technologies in critically ill children is currently a major limitation to their widespread application in the pediatric intensive care unit. CONCLUSIONS: Future prospective multicenter work addressing major knowledge gaps is necessary to advance the field of pediatric noninvasive neuromonitoring.


Assuntos
Lesões Encefálicas , Ultrassonografia Doppler Transcraniana , Humanos , Criança , Ultrassonografia Doppler Transcraniana/métodos , Espectroscopia de Luz Próxima ao Infravermelho , Estado Terminal , Unidades de Terapia Intensiva Pediátrica , Estudos Multicêntricos como Assunto
6.
J Cerebrovasc Endovasc Neurosurg ; 26(1): 23-29, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37813698

RESUMO

OBJECTIVE: Flow diverting stents (FDS) are increasingly used for the treatment of intracranial aneurysms. While FDS can provide flow diversion of parent vessels, their high metal surface coverage can cause thromboembolism. Transcranial Doppler (TCD) emboli monitoring can be used to identify subclinical embolic phenomena after neurovascular procedures. Limited data exists regarding the use of TCDs for emboli monitoring in the periprocedural period after FDS placement. We evaluated the rate of positive TCDs microembolic signals and stroke after FDS deployment at our institution. METHODS: We retrospectively evaluated 105 patients who underwent FDS treatment between 2012 and 2016 using the Pipeline stent (Medtronic, Minneapolis, MN, USA). Patients were pretreated with aspirin and clopidogrel. All patients were therapeutic on clopidogrel pre-operatively. TCD emboli monitoring was performed immediately after the procedure. Microembolic signals (mES) were classified as "positive" (<15 mES/hour) and "strongly positive" (>15 mES/hour). Clinical stroke rates were determined at 2-week and 6-month post-operatively. RESULTS: A total of 132 intracranial aneurysms were treated in 105 patients. TCD emboli monitoring was "positive" in 11.4% (n=12) post-operatively and "strongly positive" in 4.8% (n=5). These positive cases were treated with heparin drips or modification of the antiplatelet regimen, and TCDs were repeated. Following medical management modifications, normalization of mES was achieved in 92% of cases. The overall stroke rates at 2-week and 6-months were 3.8% and 4.8%, respectively. CONCLUSIONS: TCD emboli monitoring may help early in the identification of thromboembolic events after flow diversion stenting. This allows for modification of medical therapy and, potentially, preventionf of escalation into post-operative strokes.

7.
Brain Res ; 1822: 148580, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37709160

RESUMO

BACKGROUND: This study aimed to observe changes of rats' brain infarction and blood vessels during neonatal hypoxic ischemic encephalopathy (NHIE) modeling by Transcranial Doppler Ultrasonography (TCD) so as to assess the feasibility of TCD in evaluating NHIE modeling. METHODS: Postnatal 7-days (d)-old Sprague Dawley (SD) rats were divided into the Sham group, hypoxic-ischemic (HI) group, and hypoxia (H) group. Rats in the HI group and H group were subjected to hypoxia-1 hour (h), 1.5 h and 2.5 h, respectively. Evaluation on brain lesion was made based on Zea-Longa scores, hematoxylin-eosin (HE) staining and Nissl staining. The brain infarction and blood vessels of rats were monitored and analyzed under TCD. Correlation analysis was applied to reveal the connection between hypoxic duration and infarct size detected by TCD or Nissl staining. RESULTS: In H and HI modeling, longer duration of hypoxia was associated with higher Zea-Longa scores and more severe nerve damage. On the 1 d after modeling, necrosis was found in SD rats' brain indicated by HE and Nissl staining, which was aggravated as hypoxic duration prolonged. Alteration of brain structures and blood vessels of SD rats was displayed in Sham, HI and H rats under TCD. TCD images for coronal section revealed that brain infarct was detected at the cortex and there was marked cerebrovascular back-flow of HI rats regardless of hypoxic duration. On the 7 d after modeling, similar infarct was detected under TCD at the cortex of HI rats in hypoxia-1 h, 1.5 h and 2.5 h groups, whereas the morphological changes were deteriorated with longer hypoxic time. Correlation analysis revealed positive correlation of hypoxic duration with infarct size detected by histological detection and TCD. CONCLUSIONS: TCD dynamically monitored cerebral infarction after NHIE modeling, which will be potentially served as a useful auxiliary method for future animal experimental modeling evaluation in the case of less animal sacrifice.


Assuntos
Hipóxia-Isquemia Encefálica , Ratos , Animais , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/patologia , Ratos Sprague-Dawley , Animais Recém-Nascidos , Ultrassonografia Doppler Transcraniana , Encéfalo/patologia , Isquemia/patologia , Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/patologia , Infarto Encefálico/patologia
8.
Nutrition ; 117: 112217, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37826937

RESUMO

OBJECTIVE: The objective of the present study is to evaluate whether, after caffeine ingestion, there are variations in blood velocity of the middle cerebral arteries in clinically healthy young people as well as to evaluate whether this variation is dependent on the administered dose. METHODS: We used transcranial Doppler ultrasonography to record blood velocities of the middle cerebral arteries in three groups of 15 clinically healthy young adults each: no caffeine, a45 mg, and 120 mg of caffeine groups. Transcranial Doppler ultrasonography provided simultaneous bilateral velocity of the middle cerebral arteries measurements while participants performed functional tests (hyperventilation and hypoventilation orders) and three cognitive activities (test 1, short-term memory; test 2, solving a vocabulary problem; and test 3, solving a math problem) each in 31-s tests with 1-min rests between them. Participants were assessed before and 30 min after caffeine ingestion. RESULTS: There was a significant decrease in mean velocity, peak systolic velocity, end-diastolic velocity, and heart rate after high caffeine intake, except in hyperventilation, which was only observed in peak systolic velocity. With the intake of a lower dose, significant decreases were seen with hypoventilation and with test 1. In hyperventilation, there was only a significant decrease in end-diastolic velocity and heart rate; in test 2, it was found in mean velocity and peak systolic velocity; and in test 3, only in heart rate. CONCLUSION: With this study, we conclude that caffeine influences the cardiovascular system acutely, interfering with the velocity of the middle cerebral arteries, causing its decrease. We also conclude that this acute effect causes vasodilation of the cerebral arteries, more accentuated with higher doses of caffeine.


Assuntos
Cafeína , Hiperventilação , Adulto Jovem , Humanos , Adolescente , Cafeína/farmacologia , Hipoventilação , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/fisiologia , Circulação Cerebrovascular/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-38013445

RESUMO

Cerebral vasospasm (CV) is a common severe complication of subarachnoid hemorrhage (SAH), a severe type of intracranial bleeding that is uncommon in children. The purpose of this article is to review the current literature regarding this potentially devastating complication. CV may be asymptomatic and is less common in children compared to adults. Several molecular phenomena, including inflammatory ones, contribute to its pathophysiology. Better collateral circulation and higher cerebral blood flow are protective factors in children. When clinically apparent, CV may manifest as a change in the child's neurologic status or vital signs. CV can be diagnosed using brain vessel imaging, such as computed tomography angiography, magnetic resonance angiography, digital subtraction angiography, transcranial Doppler ultrasonography, and computed tomography perfusion. A reduction of < 50% in the artery's caliber confirms the diagnosis. Besides general supportive measures and causative treatment of SAH, CV management options include the administration of calcium channel blockers and neurointerventional approaches, such as intra-arterial vasodilators and balloon angioplasty. Long-term outcomes in children are usually favorable.

10.
Crit Care Explor ; 5(9): e0953, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37644975

RESUMO

OBJECTIVES: Transcranial Doppler (TCD) has been evaluated as a noninvasive intracranial pressure (ICP) assessment tool. Correction for insonation angle, a potential source of error, with transcranial color-coded sonography (TCCS) has not previously been reported while evaluating ICP with TCD. Our objective was to study the accuracy of TCCS for detection of ICP elevation, with and without the use of angle correction. DESIGN: Prospective study of diagnostic accuracy. SETTING: Academic neurocritical care unit. PATIENTS: Consecutive adults with invasive ICP monitors. INTERVENTIONS: Ultrasound assessment with TCCS. MEASUREMENTS AND MAIN RESULTS: End-diastolic velocity (EDV), time-averaged peak velocity (TAPV), and pulsatility index (PI) were measured in the bilateral middle cerebral arteries with and without angle correction. Concomitant mean arterial pressure (MAP) and ICP were recorded. Estimated cerebral perfusion pressure (CPP) was calculated as estimated CPP (CPPe) = MAP × (EDV/TAPV) + 14, and estimated ICP (ICPe) = MAP-CPPe. Sixty patients were enrolled and 55 underwent TCCS. Receiver operating characteristic curve analysis of ICPe for detection of invasive ICP greater than 22 mm Hg revealed area under the curve (AUC) 0.51 (0.37-0.64) without angle correction and 0.73 (0.58-0.84) with angle correction. The optimal threshold without angle correction was ICPe greater than 18 mm Hg with sensitivity 71% (29-96%) and specificity 28% (16-43%). With angle correction, the optimal threshold was ICPe greater than 21 mm Hg with sensitivity 100% (54-100%) and specificity 30% (17-46%). The AUC for PI was 0.61 (0.47-0.74) without angle correction and 0.70 (0.55-0.92) with angle correction. CONCLUSIONS: Angle correction improved the accuracy of TCCS for detection of elevated ICP. Sensitivity was high, as appropriate for a screening tool, but specificity remained low.

11.
Clin Neurol Neurosurg ; 231: 107820, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37327717

RESUMO

INTRODUCTION: Studies have shown that right-to-left shunt (RLS) is closely related to the occurrence of white matter hyperintensities (WMHs). Therefore, the detection of RLS is of great significance for the diagnosis and treatment of cerebral small vessel disease, especially for the prevention and treatment of WMHs. In this study, the c-TCD foaming experiment was selected to screen RLS, and evaluate the correlation between RLS and the severity of WMHs. METHODS: We enrolled 334 migraineurs from a multicentre study from July 1 2019 and January 31 2020. Participants were all evaluated using contrast-enhanced transcranial Doppler, magnetic resonance imaging (MRI), and completed a questionnaire covering demographics, the main risk factors of vascular disease, and migraine status. RLS was classified into four grades (Grade 0 = Negative; Grade I = 1 ≤microbubbles (MBs)≤ 10; Grade II = MBs > 10 and no curtain; Grade III = curtain). Silent brain ischemic infarctions (SBI) and white matter hyperintensities (WMHs) were evaluated on MRI. RESULTS: In the incidence of WMHs, we found a significant difference between patients with RLS and no RLS (p < 0.05). There is no relationship between different grades of RLS and the severity of WMHs (p > 0.05). CONCLUSION: Overall, the positive rate of RLS is related to the incidence of WMHs. The different grades of RLS have no-relationship to do with the severity of WMHs.


Assuntos
Forame Oval Patente , AVC Isquêmico , Transtornos de Enxaqueca , Substância Branca , Substância Branca/irrigação sanguínea , Substância Branca/diagnóstico por imagem , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Ultrassonografia Doppler Transcraniana , Imageamento por Ressonância Magnética , Inquéritos e Questionários , Forame Oval Patente/complicações , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/etiologia , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/etiologia
12.
Rev Esp Anestesiol Reanim (Engl Ed) ; 70(5): 269-275, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37150439

RESUMO

BACKGROUND: Brain ultrasound allows measuring the cerebral flow velocity, brain midline shift and optic nerve sheath diameter. Literature is scarce in determining the feasibility to perioperatively perform these measurements altogether and the cerebrovascular behavior in patients scheduled for elective craniotomy. METHODS: We assessed bilateral cerebral flow velocities, composite index, brain midline shift and optic nerve sheath diameter by cerebral ultrasound in patients scheduled for elective craniotomy before anesthetic induction, at extubation, and at 6 and 24 h after. The aim was to assess the feasibility of brain ultrasound in patients for elective craniotomy and to describe the changes in cerebral flow velocities, brain midline shift and optic nerve sheath diameter from baseline values at different times in the postoperative period. RESULTS: Sixteen patients were included, of these two were excluded from analysis due to an inadequate sonographic window. There were no changes throughout the study regarding cerebral flow velocity, brain midline shift nor optic nerve sheath diameter assessments. All parameters were maintained in the physiological range without significant variations during the procedure. No perioperative complications were detected. CONCLUSIONS: The results of our study show the feasibility to perform a perioperative assessment of cerebral flow velocity, brain midline shift or optic nerve sheath diameter jointly and successfully to obtain additional information of baseline cerebral hemodynamics in patients scheduled for elective craniotomy and their postoperative changes during the first 24 h. Future studies with lager samples are needed to address the efficacy of cerebral ultrasound as a monitoring tool.


Assuntos
Encéfalo , Ultrassonografia Doppler Transcraniana , Humanos , Estudos de Viabilidade , Velocidade do Fluxo Sanguíneo , Craniotomia , Nervo Óptico/diagnóstico por imagem
13.
Front Neurosci ; 17: 962001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250420

RESUMO

Objective: This study aimed to investigate the feasibility of Transcranial Doppler Ultrasonography (TCD) in evaluating neonatal hypoxic-ischemic encephalopathy (NHIE) modeling through monitoring the alteration of cerebrovascular flow in neonatal hypoxic-ischemic (HI) rats. Methods: Postnatal 7-day-old Sprague Dawley (SD) rats were divided into the control group, HI group, and hypoxia (H) group. TCD was applied to assess the changes of cerebral blood vessels, cerebrovascular flow velocity, and heart rate (HR) in sagittal and coronal sections at 1, 2, 3, and 7 days after the operation. For accuracy, cerebral infarct of rats was examined by 2,3,5-Triphenyl tetrazolium chloride (TTC) staining and Nissl staining to simultaneously verify the establishment of NHIE modeling. Results: Coronal and sagittal TCD scans revealed obvious alteration of cerebrovascular flow in main cerebral vessels. Obvious cerebrovascular back-flow was observed in anterior cerebral artery (ACA), basilar artery (BA), middle cerebral artery (MCA) of HI rats, along with accelerated cerebrovascular flows in the left internal carotid artery (ICA-L) and BA, decreased flows in right internal carotid artery (ICA-R) relative to those in the H and control groups. The alterations of cerebral blood flows in neonatal HI rats indicated successful ligation of right common carotid artery. Besides, TTC staining further validated the cerebral infarct was indeed caused due to ligation-induced insufficient blood supply. Damage to nervous tissues was also revealed by Nissl staining. Conclusion: Cerebral blood flow assessment by TCD in neonatal HI rats contributed to cerebrovascular abnormalities observed in a real-time and non-invasive way. The present study elicits the potentials to utilize TCD as an effective means for monitoring the progression of injury as well as NHIE modeling. The abnormal appearance of cerebral blood flow is also beneficial to the early warning and effective detection in clinical practice.

14.
Rev. esp. anestesiol. reanim ; 70(5): 269-275, May. 2023. tab
Artigo em Espanhol | IBECS | ID: ibc-219859

RESUMO

Introducción: La ecografía cerebral permite valorar las velocidades del flujo sanguíneo cerebral (VFSC), la desviación de la línea media (DLM) y el diámetro de la vaina del nervio óptico (DVNO). La literatura es escasa en determinar la viabilidad de realizar dichas medidas, de forma conjunta en el perioperatorio, en pacientes programados para craneotomía electiva. Métodos: Evaluamos las VFSC de forma bilateral con sus índices compuestos, la DLM y el DVNO por medio de ultrasonido cerebral en pacientes programados para craneotomía electiva antes de la inducción anestésica, en la extubación inmediata, a las seis y 24 horas posoperatorias. El objetivo fue evaluar la viabilidad del uso de la ecografía cerebral en pacientes sometidos a craneotomía electiva y describir los cambios de estas mediciones en diferentes momentos con respecto a los valores basales. Resultados: Fueron incluidos 16 pacientes en el estudio, de los cuales dos se excluyeron del análisis debido a una mala ventana ecográfica. No hubo cambios a lo largo del estudio con respecto a las VFSC, tampoco en la DLM o en el DVNO. Todos los parámetros se mantuvieron dentro de los rangos fisiológicos sin variaciones significativas durante el procedimiento. No hubo complicaciones perioperatorias. Conclusiones: Los resultados de nuestro trabajo muestran la factibilidad de realizar una valoración perioperatoria de las VFSC, DLM y DVNO de forma conjunta y exitosa para obtener información de la hemodinámica cerebral basal en pacientes programados para craneotomía electiva y valorar sus cambios durante las primeras 24 horas del posoperatorio. Son necesarios estudios con mayor número de pacientes para evaluar la eficacia del ultrasonido cerebral como herramienta de monitorización neurológica perioperatoria.(AU)


Background: Brain ultrasound allows measuring the cerebral flow velocity, brain midline shift and optic nerve sheath diameter. Literature is scarce in determining the feasibility to perioperatively perform these measurements altogether and the cerebrovascular behavior in patients scheduled for elective craniotomy. Methods: We assessed bilateral cerebral flow velocities, composite index, brain midline shift and optic nerve sheath diameter by cerebral ultrasound in patients scheduled for elective craniotomy before anesthetic induction, at extubation, and at 6 and 24 hours after. The aim was to assess the feasibility of brain ultrasound in patients for elective craniotomy and to describe the changes in cerebral flow velocities, brain midline shift and optic nerve sheath diameter from baseline values at different times in the postoperative period. Results: Sixteen patients were included, of these two were excluded from analysis due to an inadequate sonographic window. There were no changes throughout the study regarding cerebral flow velocity, brain midline shift nor optic nerve sheath diameter assessments. All parameters were maintained in the physiological range without significant variations during the procedure. No perioperative complications were detected. Conclusions: The results of our study show the feasibility to perform a perioperative assessment of cerebral flow velocity, brain midline shift or optic nerve sheath diameter jointly and successfully to obtain additional information of baseline cerebral hemodynamics in patients scheduled for elective craniotomy and their postoperative changes during the first 24 hours. Future studies with lager samples are needed to address the efficacy of cerebral ultrasound as a monitoring tool.(AU)


Assuntos
Humanos , Neoplasias do Nervo Óptico , Craniotomia , Ultrassonografia Doppler Transcraniana , Neurocirurgia , Estudos Prospectivos , Nervo Óptico
15.
Neurosurg Rev ; 46(1): 64, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877325

RESUMO

To explore the utility of transcranial Doppler (TCD) findings when assessing bypass patency in patients with Moyamoya disease (MMD). Computed tomography angiography (CTA) and TCD sonography (TCDS) were performed before and after surgery to evaluate bypass patency. The peak systolic flow velocity (PSV) of the superficial temporal artery (STA) and the pulsatility index (PI) were compared between the groups that achieved patency and not, and receiver operating characteristic (ROC) curve analyses were used to define the TCDS criteria revealing patency. This study included 35 hemispheres (15 women; mean age 47 years) with Moyamoya disease who underwent STA-middle carotid artery bypass in our institution between January 2022 and October 2022. The PSV first increased on postoperative days 4-5 and then decreased on postoperative days 6-7 and 7-8. Patients with transient neurological diseases (TNDs), compared to those without, evidenced a significantly lower PSV value (P < 0.05). Compared with the non-patency group, the PSV was higher (P < 0.001) in the patency group. The cutoff values reflecting patency with good sensitivity and specificity were PSV > 49.00; PSV ratio (postoperative/preoperative) > 1.218; PSV ratio (operation side/contralateral side) > 1.082; and PSV ratio (adjusted) > 1.202. In the patency group, the PSV and PI significantly increased (P < 0.001) and decreased (P < 0.001) respectively. Bypass patency can be noninvasively and accurately evaluated via TCDS, affording an objective basis for assessment of the effect of revascularization surgery on patients with MMD.


Assuntos
Angiografia por Tomografia Computadorizada , Doença de Moyamoya , Humanos , Feminino , Pessoa de Meia-Idade , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/cirurgia , Ultrassonografia Doppler Transcraniana , Angiografia
16.
Neurocrit Care ; 38(2): 486-503, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36828980

RESUMO

BACKGROUND: Cerebrovascular disorders are an important cause of morbidity and mortality in children. The acute care of a child with an ischemic or hemorrhagic stroke or cerebral sinus venous thrombosis focuses on stabilizing the patient, determining the cause of the insult, and preventing secondary injury. Here, we review the use of both invasive and noninvasive neuromonitoring modalities in the care of pediatric patients with arterial ischemic stroke, nontraumatic intracranial hemorrhage, and cerebral sinus venous thrombosis. METHODS: Narrative review of the literature on neuromonitoring in children with cerebrovascular disorders. RESULTS: Neuroimaging, near-infrared spectroscopy, transcranial Doppler ultrasonography, continuous and quantitative electroencephalography, invasive intracranial pressure monitoring, and multimodal neuromonitoring may augment the acute care of children with cerebrovascular disorders. Neuromonitoring can play an essential role in the early identification of evolving injury in the aftermath of arterial ischemic stroke, intracranial hemorrhage, or sinus venous thrombosis, including recurrent infarction or infarct expansion, new or recurrent hemorrhage, vasospasm and delayed cerebral ischemia, status epilepticus, and intracranial hypertension, among others, and this, is turn, can facilitate real-time adjustments to treatment plans. CONCLUSIONS: Our understanding of pediatric cerebrovascular disorders has increased dramatically over the past several years, in part due to advances in the neuromonitoring modalities that allow us to better understand these conditions. We are now poised, as a field, to take advantage of advances in neuromonitoring capabilities to determine how best to manage and treat acute cerebrovascular disorders in children.


Assuntos
Isquemia Encefálica , Transtornos Cerebrovasculares , AVC Isquêmico , Trombose Venosa , Criança , Humanos , Hemorragias Intracranianas
17.
Perfusion ; 38(8): 1688-1696, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36148780

RESUMO

OBJECTIVE: Delayed neurocognitive recovery (dNCR) remains a common complication after surgery and the incidence of it is determined 30-80% after cardiac surgery with cardiac bypass (CPB) in eldery patients. Many researchers have identified that neuropsychological complications emerge from insufficient cerebral perfusion. Relative cerebral hyperperfusion also disrupts cerebral autoregulation and might play a significant role in dNCR development. The aim of this study is to determine hyperperfusion in the middle cerebral artery during CPB influence to dNCR development and brain biomarker glial fibrillary acidic protein (GFAP) impact in diagnosing dNCR. DESIGNS AND METHODS: This prospective - case control study included patients undergoing elective coronary artery bypass grafting or/and valve surgery with CPB. For cognitive evaluation 101 patients completed Addenbrooke's cognitive examination - ACE-III. To determine mild cognitive dysfunction, cut - off 88 was chosen. Mean BFV was monitored with transcranial Doppler ultrasonography (TCD) and performed before surgery, after induction of anaesthesia, during CPB and after surgery. Preoperative BFV was converted to 100% and used as a baseline. The percentage change of cerebral blood flow velocity during CPB was calculated from baseline. Patients with decreased blood flow velocity were included for further investigation. To measure glial fibrillary acidic protein, blood samples were collected after anaesthesia induction, 24 and 48 h after the surgery. According to the ACE-III test results, patients with relative hyperperfusion were divided into two groups: with Delayed neurocognitive recovery and without dNCR (non-dNCR group). RESULTS: 101 patients were examined, 67 (69.1%) men and 29 (29.9%) women, age 67.9 (SD 9.2) Increased percentage of BFV was determined for 40 (39.60%) patients. There were no differences in sex, haematocrit, paCO2, aortic cross-clamping or CPB time between the two groups. Percentage change of BFV was 105.60% in the non-dNCR group and 132.29% in the dNCR group, p = .033. Patients who developed dNCR in the early post-surgical period were significantly older, p < .001 and had a lower baseline of BFV, p = .004. GFAP concentration significantly increased in the dNCR group 48 hours after surgery, compared to the non-dNCR group, p = .01. CONCLUSIONS: Relative hyperperfusion during CPB may cause dNCR. Elderly patients are sensitive to blood flow velocity acceleration during CPB. GFAP concentration increased 48 h after surgery in dNCR group but did not have any connection with risk factors.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Ponte Cardiopulmonar , Masculino , Humanos , Feminino , Idoso , Proteína Glial Fibrilar Ácida , Ponte Cardiopulmonar/efeitos adversos , Ponte Cardiopulmonar/métodos , Estudos Prospectivos , Estudos de Casos e Controles , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Circulação Cerebrovascular/fisiologia
18.
Front Neurol ; 14: 1303075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274881

RESUMO

Background: Sepsis-associated encephalopathy (SAE) is prevalent in intensive care unit (ICU) environments but lacks established treatment protocols, necessitating prompt diagnostic methods for early intervention. Traditional symptom-based diagnostics are non-specific and confounded by sedatives, while emerging biomarkers like neuron-specific enolase (NSE) and S100 calcium-binding protein B (S100B) have limited specificity. Transcranial Doppler (TCD) indicators, although is particularly relevant for SAE, requires high operator expertise, limiting its clinical utility. Objective: This pilot study aims to utilize cerebral circulation time (CCT) assessed via contrast-enhanced ultrasound (CEUS) as an innovative approach to investigate the accuracy of SAE prediction. Further, these CCT measurements are integrated into a nomogram to optimize the predictive performance. Methods: This study employed a prospective, observational design, enrolling 67 ICU patients diagnosed with sepsis within the initial 24 h. Receiver operating characteristic (ROC) curve analyses were conducted to assess the predictive accuracy of potential markers including NSE, S100B, TCD parameters, and CCT for SAE. A nomogram was constructed via multivariate Logistic Regression to further explore the combined predictive potential of these variables. The model's predictive performance was evaluated through discrimination, calibration, and decision curve analysis (DCA). Results: SAE manifested at a median of 2 days post-admission in 32 of 67 patients (47.8%), with the remaining 35 sepsis patients constituting the non-SAE group. ROC curves revealed substantial predictive utility for CCT, pulsatility index (PI), and S100B, with CCT emerging as the most efficacious predictor, evidenced by an area under the curve (AUC) of 0.846. Multivariate Logistic Regression identified these markers as independent predictors for SAE, leading to the construction of a nomogram with excellent discrimination, substantiated by an AUC of 0.924 through bootstrap resampling. The model exhibited satisfactory concordance between observed and predicted probabilities, and DCA confirmed its clinical utility for the prompt identification of SAE. Conclusion: This study highlighted the enhanced predictive value of CCT in SAE detection within ICU settings. A novel nomogram incorporating CCT, PI, and S100B demonstrated robust discrimination, calibration, and clinical utility, solidifying it as a valuable tool for early SAE intervention.

19.
Med Eng Phys ; 110: 103921, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36564144

RESUMO

A similar pattern of cerebral blood velocity (CBv) response has been observed for neurovascular coupling (NVC) assessment with cognitive tasks of varying complexity and duration. This lack of specificity could result from parallel changes in arterial blood pressure (BP) and PaCO2, which could confound the estimates of NVC integrity. Healthy participants (n = 16) underwent recordings at rest (5 min sitting) and during randomized paradigms of different complexity (naming words (NW) beginning with P-, R-, V- words and serial subtractions (SS) of 100-2, 100-7, 1000-17, with durations of 5, 30 and 60 s). Bilateral CBv (middle cerebral arteries, transcranial Doppler), end-tidal CO2 (EtCO2, capnography), blood pressure (BP, Finapres) and heart rate (HR, ECG) were recorded continuously. The bilateral CBv response to all paradigms was classified under objective criteria to select only responders, then the repeated data were averaged between visits. Bilateral CBv change to tasks was decomposed into the relative contributions (subcomponents) of arterial BP (VBP; neurogenic), critical closing pressure (VCrCP; metabolic) and resistance area product (VRAP; myogenic). A temporal effect was demonstrated in bilateral VBP and VRAP during all tasks (p<0.002), increased VBP early (between 0 and 10 s) and followed by decreases of VRAP late (25-35 s) in the response. VCrCP varied by complexity and duration (p<0.046). The main contributions to CBv responses to cognitive tasks of different complexity and duration were VBP and VRAP, whilst a smaller contribution from VCrCP would suggest sensitivity to metabolic demands. Further studies are needed to assess the influence of different paradigms, ageing and cerebrovascular conditions.


Assuntos
Acoplamento Neurovascular , Humanos , Acoplamento Neurovascular/fisiologia , Circulação Cerebrovascular/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Cognição/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Ultrassonografia Doppler Transcraniana
20.
Eur J Med Res ; 27(1): 228, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329503

RESUMO

PURPOSE: The purpose of this study was to observe the morphologic characteristics of patent foramen ovale (PFO) by transesophageal echocardiography (TEE), and to analyze its correlation with right-to-left shunt (RLS) of contrast-transthoracic echocardiography (c-TTE) and contrast-transcranial Doppler ultrasonography (c-TCD). METHODS: 124 patients with PFO were divided into four groups according to the morphological characteristics of PFO. RLS grade of each group PFO with c-TTE and c-TCD in resting and Valsalva manoeuvre was measured. Anatomical structures influencing RLS grade were analyzed statistically through multivariate logistic analyses and predictive models. RESULTS: The 124 cases of PFO were divided into four groups: 55 cases (44.4%) with smooth uniform tubular tunnel (SUT), 21 cases (16.9%) with granule uniform tubular tunnel (GUT), 23 cases (18.5%) of right funnelform, 25 cases (20.2%) of left funnelform. Between group comparisons and multivariate logistic analyses revealed that PFO morphotype and interatrial septum(IAS) mobility were influencing factors of RLS degree. During Valsalva, the probability of c-TCD RLS ≥ 2 for the right funnelform PFO was 13.428 times that of the GUT, one unit increase in IAS mobility increased the probability of c-TCD RLS ≥ 2 by a factor of 2.029, model predicted c-TCD RLS ≥ 2 with 78.1% sensitivity and 94.7% specificity; During Valsalva, the probability of c-TCD RLS ≥ 2 for the SUT PFO was 4.244 times that of the GUT, one unit increase in IAS mobility increased the probability of c-TTE RLS ≥ 2 by a factor of 2.392, model predicted c-TTE RLS ≥ 2 with 80.2% sensitivity and 87.9% specificity. CONCLUSIONS: Studies have shown that the morphological structure of PFO is an influencing factor of RLS, and TEE can observe the specific morphological characteristics of PFO, which can further predict the level of RLS, help predict the occurrence of Cryptogenic stroke (CS). The above provides more evidences and surgical options for Interventional device closure indications.


Assuntos
Forame Oval Patente , Humanos , Forame Oval Patente/diagnóstico por imagem , Ultrassonografia Doppler Transcraniana , Ecocardiografia , Ecocardiografia Transesofagiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...